skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klein, OD"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The cellular organization within organoid models is important to regulate tissue-specific function, yet few engineering approaches can control or direct cellular organization. Here, a photodegradable hydrogel is used to create softened regions that direct crypt formation within intestinal organoids, where the dimensions of the photosoftened regions generate predictable and defined crypt architectures. Guided by in vivo metrics of crypt morphology, this photopatterning method is used to control the width and length of in vitro organoid crypts, which ultimately defines the curvature of the epithelium. By tracking expression of differentiated Paneth-cell markers in real time, we show that epithelial curvature directs the localization of Paneth cells within engineered crypts, providing user-directed control over organoid functionality. We anticipate that our improved control over organoid architecture and thus Paneth-cell localization will lead to more consistent in vitro organoid models for both mechanistic studies and translational applications. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026